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Abstract

Dispersion of a wide-bandwidth radar signal

by a static atmospher; is considered. Using ex-

perimental data to fit the attenuation (in db/km) due

to molecular resonances, the index of refraction may

be inferred. The dispersive delay due to two-way

propagation through the atmosphere is then compared

to the dispersion one would normally design for a

pulse compression receiver. Comparison indicates

that atmospheric dispersion is quite small unless the

center frequency is near the lowest water vapor

resonance at X = 1. 35 cm.
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Introduction

The dispersive properties of the atmosphere have been widely studied

in ae past. By the simple requirement of causality, Kramers and Kronig

showed that the real and imaginary parts of the complex dielectric constant

are Hilbert transforms of each other. Using these relations, Van Vleck 1

showed that a very small change in the real part of the dielectric constant

over the microwave region will automatically imply a serious attenuation of

microwaves. In fact, he showed that a change of one ptrt in 10 between

X = and X = I cm implies at least . 5 db/km attenuation for all wavelengths

shorter than about 2 cm. He comments, "Thus, we can safely conclude that

for all frequencies in the microwave region, the static value of the dielectric

constant can be used without appreciable error. "

It is, in fact, the purpose of this paper to investigate the effects of

such a small dielectric gradient (with respect to frequency) on a wide band-

width signal which propagates through a static atmosphere. At the outset, it

will be well to realize that we shall only obtain an estimate of such effects.

Basically, this is due to the fact that it is very difficult to obtain accurate

theoretical or experimental values of the complex dielectric constant except

near a microwave resonance of atmospheric constituents such as molecular

oxygen and water vapor.

In Section I we briefly review the description of waves propagating in

an homogeneous, isotropic medium of complex dielectric constant. In

Section II the transmitted radar waveform is introduced by means of spectral

weighting. The effects of scattering are mentioned and a discussion of the

radar receiver enables us to define the dispersive time delay of a pulse com-

pression system. This delay function of frequency enables one to make a

comparison with the dispersion introduced by propagation through the atmos-
phere.

1. For a general reference for material contained in this paper, see

Propagation of Short Radio Waves, M.I.T. Rad. Lab. Series No. 13, Ch. 8,

McGraw -Hill ( 19 51).



In Section Ii, the dispersion and attenuation of the atmosphere is

assumed to be a small effect near the radar center frequency, f Appro-0

priate expansions of the dielectric constant about f , and exponential scaling0

with altitude allows one to define the dispersion and attenuation constants in

terms of which one may calculate these effects. In Section IV we use the
1

general resonance formulae given by Van Vleck and the experimental and

theoretical data to determine the dispersion and attenuation constants. Finally,

the dispersive delay is compared to that which one would normally implement

for a linear frequency-ymodulated (fm) signal, and it is show-n that atmospheric

dispersion of an X-band signal of duration .i-psec and I-GC bandwidth is

negligible. In fact, dispersion of a short-duration, wide-bandwidth signal by

the atmosphere is unimportant for frequencies sufficiently below the first

water vapor resonance.

I. Plane Waves in a Medium of Complex Dielectric Constant

Although the description of a plane wave propagating in an homogeneous

isotropic medium of complex dielectric constant is well known, we include a

few of the basic equations. The wave equation for a one-dimensional harmonic

field is

(vE +k)E(r) = 0

where k = /c ; w is the radian frequency, c is the velocity light, and E

is the complex dielectric constant at the frequency f = w/Zr . The solutions

of this equation are

- ei(n + iy) (1.2)

where I k = k and k E = 0 . The constants n and y are determined by

(n + iy) : I + ie 2  (1.3)

where £I and c2 are the real and imaginary parts of the dielectric constant,

respectively. Solving for n and y , we find (choosing the least attenuated

2



solutions)

n [eI  + C 2 + C 2 (1.4)

and
2~ ~ / 22 ]Y 2 1le + 2, (1.5)

y~~~ ~1 - 1  ~+ 2 j

If we expand these solutions, assuming E2 /E: << I (in practice this is quite

valid), we find

n -- /, - , (1.6)

and

2  (1.7)

This finally yields the solution which propagates with the least attenuation,

E (r,t)=Ee ) 7  (1.8)

II. Radar Transmission and Reception

Suppose we choose our radar coordinate system such that k is along

the x-axis; then

i( kx - wt) -- ckx

E (x, t)= Ee e (2.1)

In practice, of course, we shall transmit a wave train of some finite duration.

This wave train is then simply represented by

E(x,t) = f dwS(w) E w(x,t) , (2,2)

where S(w) indicates the spectral content of the wave. We now assume that
this wave travels out from the radar a distance I and is reflected by a

stationary point scatterer (independent of polarization and frequency). The

scattered field at the radar is then

3



A tO i(2f k Iwt) - 2 kl
E (ot) =f dwS(w)E e e , (2.3)

where A is the complex radar scattering amplitude of the point scatterer

(the radar cross section, T , is given by a- = A 12). Furthermore, we may

assume that the radar is a linear device such that the sig.... received w-th-in

the radar is given by

A i(ZAE ki - wt)
s(t) - dwE -" R(w)S(w) e e-, (2.4)

_ I 
'

where R(w) is the polarization dependent gain of the system at the frequency,

f . (Note that one could easily include polarization and frequency dependence

due to the scatterer by simply replacing A inside the integral by A(w), the

scattering dyadic, or scattering matrix; i. e. , use the combination E 0 A(w)o

in Eqs. '2.3) and (2. 4). Furthermore, one could also include the effects of

a mtvi& target by simply replacing w by w(l + 2v) in the wt phase term,

where v is the velocity component of the scatterer toward the radar.)

The polarization and frequency dependence of R(w) will normally sepa-

rate such that we may assume

R(w) = eRR(w) (2. 5)

where eiR is a unit vector. The function R(w) will normally be the function

matched to S(w); i.e.. R(,i) will be the filter designed to maximize the re-
2

ceived signal energy-to-noise power ratio (for white noise) . Thus, we may

assume that

R(w)= S(w) (2.6)

(Note that there may also be some spectral weighting to reduce range sidelobes.)

Although it is difficult to mak,. any general statements regarding the proper-

ties of S(w) , i.e. , the best wide-bandwidth signal to provide good pulse com-

pression with very low range sidelobes, one may consider the behavior of

2. See, for example, Skonik, Introduction to Radar Systems, Ch. 9,

McGraw-Hill (1962).
4



the first frequency derivative of the phase of S(w) ; this function is called the
3dispersive time delay . If

S(w) = I S(w) I ei*(w)

then

T(f) (2.7)

and its general behavior is indicated in Fig. 1, where T is the transmitted

pulse length, W is the instantaneous frequency bandwidth, and f is the0

center frequency. (A constant delay has been neglected.)

T / - T M f 
1 3 -4 1 8 6 70 1

fo-W/f
'fo fo +w/2W/2

- T/2

Fig. i. General Dispersive Time Delay versus Frequency

A useful example is the linear fm signal, for which a good approximation to

T(f) is

Tf f - f
T jf m (f) - W 28

3. See, for example, E. N. Fowle, "The Design of FM Pulse Compression

Signals," IEEE Trans. on Inf. Theory, pp. 61-67 (1964).
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111. Dispersion and Attenuation Coefficients

Having introduced the concept of the dispersive time delay for a radar

receiver, we are now able to make a meaningful evaluation of the effects of

atmospheric dispersion. In particular, we may compare the dispersive time

delay introduced via propagation in the atmosphere with that of a pulse com-

pression :eceiver. Simultaneously, we may also estimate the attenuation in-

duced by the atmosphere.

Equation (2.4) indicates the dispersion and attenuation due to a single

atmospheric constituent. Since these effects in the microwave region are

predominantly due to the resonances of water vapor and molecular oxygen,

we must generalize to include two constituents. Furthermore, we must

account for the exponential atmosphere and, in fact, allow for different

scale heights for each constituent. This might seem impossible at first

since the index of refraction is not a linear function of e 1 (see Eq. (1. 6))

however, we may limit our interest to carrier frequencies which are many
"resonant widths" lower than the lowest resonance (the water vapor resonance

at 1.35 cm). If we expand the complex dielectric constant as a function of

frequency about the radar center frequency, f , then as a function of altitude,0

h , above the earth' s surface,

f-f _f-f0 2
C (fh)= £I(f ,h) +( ) E Ki(fo h) + Z(-r-) ZK. i(f , h) + , (3.1)

o 0 o j

and
f-f Iff1 2C2(f, h) =c2(f o , h) +( I- Z i(fop h) +- - % .. j(fo, h) + .. .(3.2)

0 1 0 1j

where K.(fo.h) and E"(f , h) are due to the i-th constituent. Similarly,

K.'(f ,h) and tij(fo, h) are functions due i,j constituent mixing, such that

i )j accounts for interactions between pairs of constituents. Higher-order

coefficientG may be similarly interpreted as being due to higher-order inter-

actions. We shail assume that only the linear frequency dependence is im-

portant and neglect all higher-order terms. Furthermore, we shall use the

expansion

0



[e I(f e-I(- ;, h i71Ki(I o , h) (f_f0(3 )- i l~o, h)[I i (h .. ) (3.3)
02C (ifo, h)o

1 0 0

We may now assume that

-h/H o

SI(fo, h) = I + A e (fo)e

-hoH

E2(f o , h) = c 2 (fo )e

Ki(f , h) = Ki(f )e 
1

and -h/H.an i(fo, h) = i ( fo)e - Hi , (3.4)

where H ° is the average scale height for the atmosphere and the H. Ki

and i are the scale height, dispersion coefficient,and attenuation coefficient
for the i-th constituents contributing to the linear frequency dependence of

e(f) near f = f

Finally, the attenuation and dispersion phase terms in Eqs. (2.3) and

(2.4) are the result of evaluatir:; the phase-path integral

L =2 S dx'[c+ E? (3.5)
0

If we now include the dependence of e and e on altitude, and assume a

flat earth geometry in the vicinity of the radar (see Fig. 2), we use h = x sin e
to find

I x sin f x sin e
L(I, 6)= 2f dx[Il+- A E:(fole ]1 + AZKi(fo)e f

o 0

x sin e x sin 8
Hf f-f -+ I C E o: 0 + _ 0_ . gi (fo) e  ' ] .(3.6)

0 1

7



v T ji,86s91

X

Fig. 2. Radar Coordinate System

It should be noted that L(I, 8) is not valid for e = 0 due to the flat earth

approximation. In fact, we must restrict e such that (RE is the radius of

t the earth)

8 > Ho/RE f. 1/10 degree.

Equation (2.4) is then generalized to yield

Ao " 0 eR i LI 9 is(t) = E f dWR(w)S(w)ei[kL(IB) wt] (3.7)

e In order to obtain simple answers, let us specify two extreme cases of obser-

vation: (1) Vertical observation with I >>H ; (2) Horizontal observation

with I <<R . For these two cases we obtain (neglecting terms of order

A 10 (fo) Ki (f0

L 2 1 1 + 70H f-f
0 1

f-_f

+ iH o[E2 (f) t (-+ ) Z i(f 0 )Hi/H o ] , (3.8)
o 1

8



and

f-fLH-- 1 ?I + A cl(fo) --)] I °)ZKi (f.)

0 i

f-f+ il [e (i ) + Ey3 - (fo (3.9)
2 o T .- 0

0 1

Using Eqs. (3. 8) and (3. 9) we may now define the vertical and horizontal dis-

persive delay and atternuation factors, respectively, as

ATv(f) = L,/c c (3. 10)

A T 21 (3. 11TH~f =LH/C - c (3l)

f-f H.- [ko2(fo + ( f ) n ° §i (fo0) ]

Av(f) e 0 1[0 (3. 12)

and -f - f ) (f

AH(f) e 0 (3. 13)

Note that the dispersive delay times contain an average correction to the usual

gross range approximation; e.g., in AT it is (-) A C(f
H c 10

IV. Evaluation of the Dispersion and Attenuation Coefficients of

Water Vapor and Molecular Oxygen

In order to calculate the dispersive time delay and attenuation factors,

we must now evaluate the set of constants introduced in the preceding dis-

cussion. The quantum mechanical theory of molecular electric and magnetic

resonance phenomena is the basis for theoretical evaluations and much de-

tailed work has been. reported in the literature. Analysis of a single resonance

yields the results, valid near the i-th resonance

9



Ajf. (f. -f)
M I(f)1 +Tz-- 2 1 T] (4. 1)

tAf +

and
f. +f.

1 1.
-)ilf) - ]- 1 1-, 4.2z)

t ~ Af. + (f'f i)

where A. is a dimensionless constant, f. is the frequency at the center of
1 1

the i-th resonanlce, and Aff. is the line-breadth constant. We see that

[C i(f) - I J achieves the maximum and minimum values of ± Aifi/4Af' at

f = f' T Af.i , respectively; thus, the maximum change in c1(f) occurs in

0) this frequency interval and has the value A Ca = Aifi/ZAfi. Figure 3 (taken

from Ref. 1) indicates the behavior of c1 i(f) and the attenuation in db/km

(see Eq. 4. 6) near the resonance.

o..o 4

13 -41.0I

0.25 . 3

0 0

- 0.25k - i

-0.50 0 "
-6 -4 -2 0 2 4 6 8

f.

:e
Fig. 3. Dependence of Resonant Absorption and Refraction

on Frequency in the Vicinity of Resonance

10
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Experimental verification of Eq. (4. 1) has always been a difficult, if not

impossible, task. For a narrow-bandwidth system one must be able to perform

precise, unamrbiguous phase measurements on a scattered wave -- and one

must also theoretically subtract out all other possible phase deviations. Thus,

one usually finds in the literature experimental verifications of Eq. (4. 2) by

mea.ns of the i-th attenuation factor. In this way the two parameters, A. and1

Af. , may be evaluated and one may then assume that they are the appropriate
parameters for Eq. (4. 1). This is, in fact, what we shall assume in order to

evaluate the dispersion constant, K.1

Using Eqs. (4. 1) and (4. 2) for a single resonance, where A. and A f.S1 1

have been evaluated by comparison with experiment, we may evaluate Ki(f 0 )

and i(fo) by expanding EI(f) and c2(f) about f = f and making the

appropriate comparisons with Eqs. (3. 1) and (3. 2) combined with Eq. (3. 4).

Following this procedure we find (where we have assumed that (f -f.)>>f)
10 1

A.f.f
K.(f 0 ) =110 2 (4.3)

2(fi-f o )

and
A.f. Af.

ifo) 1 1 1 (4.4)0 (fi-fo)3

We have discussed the case of a single molecular resonance which im-

plies Eqs. (4. 1) and (4. 2); in reality we must deal with multiple resonances.

In that case it is not true that we may simply compute E(f) by adding individual

contributions since there will certainly be interactions. In particular, collision

broadening may occur. We shall assume that the A. and Af. are not appre-1 1

ciably affected if the resonances are sufficiently well separated. Thus, we

shall assume that

A.f. Af.(f) 1(4.5)

S Af + (f-fi)

1 1



At Using Eq. (4. 5) we may compute the attenuation in db/km to find

rm

A -Z C (f) 106 log e (4. 6)
Adb/km, f) - 10og

where X is measured in cm. Figures 4 and 5, taken from Ref. 1, indicate
d a combination of experimental and theoretical results obtained for the first

oxygen and water vapor resonances.

Referring to Eqs. (4. 3) and (4. 4), it is obvious that the resonances

nearest to the radar center frequency are important. In principle, we

evaluate Adb/km(f) at all f' . Equation (4. 6) then gives a set of coupled

linear equations in the A . We shall here assume that the resonances are

sufficiently separated that the overlap of the tails may be neglected as a first

approximation. Thus, we simply measure each A. separately with the1

relation

A. = fi/c),(47
A - Adb/km(fi) (4.7)

i rT 106 log e

where Xi is in cm and (Afi/c) is in c.m I Note that the attenuation due to
water vapor depends linearly on the density, p , which may vary by a large

amount. For temperate latitudes (20 C) in the summer, the average density
3 0is about 7. 5 gm/m . On the other hand, at saturation at 20 C, sea level,

p =17. gm/i 3 , and under tropical conditions the content can be even higher.

We shall evaluate Ai/p for the water vapor resonances.
ial Since the second oxygen attenuation is small, and it occurs at a smaller

ion wavelength with a much narrower width, Eq. (4. 7) indicates that A. for the
1

second resonance is very small compared to that for the first resonance.
Furthermore, since the dispersive effects at f are reduced by i

0
we may calculate a first approximation to the dispersion by using only the

first of the water vapor resonances. We may also note that this approxima-

tion will indicate a minimum estimate of the dispersion since all K. for the
1

higher resonances are positive if f is less than all the f.. The results
o 1obtained are

12



-7
A 1. 1 x I0 at X = .5 cm

0 2
and

A Fd AHO/p = 2.9 x 10 -9  at X = 1.35 cm (4.8)

Finally, we may use the results stated in Eq. (4. 8) in conjunction with

Eq. (4. 3) to calculate the dispersion constants at the frequency f0 . With

these constants we may then evaluate te dispersive time delay of Eqs. (3. 10)

or (3. 11). As an example, we evaluate ATH to find tH
f'fo0 1. 1' x107(6 x 1 0f) 2x0-9p(2' 2x 101f0fAT H  = ( -f--" ) 2  +1

'0 00(2.Zxl0 1 0 ,fo)- (49)

In order to compare this result with the dispersion characteristic of a linear

fm pulse compression receiver (see Eq. (2. 8)), we shall assume the example

f = 10 Gc , W = I Gc , T = .1 psec, p = 7. 5 gm/m3; thus

A T H 3  x 0 8 ( ) ( W 1

fm 0

where I is in km. Even if I = RE 6000 km ,the effect is negligible for a

ten percent bandwidth at X-band. In fact, if T is fixed at . I psec, W = fo/10

and I = 10 km, the average dispersion of a wide-bandwidth signal by the

atmosphere is only ten percent of the receiver dispersion when one uses a

carrier frequency which is about 100 Mc lower than the first water vapor

resonance at 22 Gc.

SLB:cm
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EXPERIMENTAL 13-4!-86671l
io- VALUES

o5PURE2

~20%C
V02,

z/

w

0.0c'
0.1 0.05cr} CK

0.02 CMJ
0.041 1

1.2 1.4 1.6 1.8 2.0 2.2- 2.4 2.6

0.75 0.65 0.55 0L45 0.40

Fig. 4. Atmospheric Attenuation by Oxygen

as a Function of Wavelength

The measurements, when made on other than 20% 02, are reduced

to "air equivalent values" by assuming that at given total pressure the ab-

sorption is proportional to the partial pressure of oxygen.
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0.05 13- 4 1- 866 I

0.04

.0

z
z
o 0.03

z
W
I- 0.09 -

x

0.01

0 I I I I I I I I
0.3 0.5 02 0.9 . 1.3

Fig. 5. Theoretical and Experimental Results on Attenuation by

Water Vapor in the 1-cm Region at a Temperature of 450 C.

The lower curve gives theoretical values based on Af/c = 0. 087 cm -

The upper curve represents measurements made at the Columbia Radiation

Laboratory. The units used are: X in cm, and p in grams per cubic meter.
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